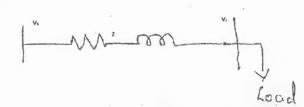


Code No.: 7201M

## VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. I Year (EEE) II-Semester (Make Up) Examinations, Sept./Oct.- 2015 (Power Systems and Power Electronics)

## **Distribution System Planning and Automation**

Time: 3 hours Max. Marks: 70 Note: Answer ALL questions in Part-A and any FIVE questions from Part-B


## Part-A (10 X 2=20 Marks)

- 1. Discuss the objective of Distribution System planning.
- 2. Define coincidence factor.
- 3. List the components of distribution system.
- 4. Distinguish between double bus-double breaker scheme and main&transfer bus scheme.
- 5. Distinguish between feeder and express feeder.
- 6. Define Tie line and illustrate the functions of Tie line.
- 7. Discuss the advantages of secondary banking.
- 8. List the various functions of secondary mains.
- 9. Explain the necessity and advantages of distribution system automation.
- 10. Define the functions of SCADA.

## Part-B (5 X 10=50 Marks)

| 11. | a) Explain the process of distribution system planning with the help of a block diagram. |                        |                  |      |
|-----|------------------------------------------------------------------------------------------|------------------------|------------------|------|
|     | b) Explain the significance of following terms in distribution system                    |                        |                  | [3]  |
|     | i) Diversity factor                                                                      | ii) Coincidence factor | iii) Load factor |      |
| 12. | a) Sketch single line diagram of double bus double breaker scheme. Enumerate the advanta |                        |                  | iges |
|     | and disadvantages of t                                                                   | he scheme.             |                  | [5]  |

- b) Compare the ratings of a square shaped and hexagonal shaped substation service areas
  of a Distribution substation when the feeders are voltage drop limited.
- a) Derive an expression for voltage drop and power loss in a feeder with uniformly distributed load.
  - b) A radial feeder has an impedance of 0.1+j0.1 pu, the sending end voltage is 1.0pu .Pr is
    1.0pu Constant power load, and the power factor at the receiving end is 0.8 lag.
    Compute V<sub>r</sub> and δ.



[6]

[5]

| 14. a) Prove the power loss due to load currents in the conductors of the 2-phase, 3 wire lateral |     |  |  |
|---------------------------------------------------------------------------------------------------|-----|--|--|
| with multi-grounded neutral is approximately 1.64 times larger than the one in the                |     |  |  |
| equivalent 3-phase lateral.                                                                       |     |  |  |
| b) A 2.4kV single phase circuit feeds a load of 360kW at a lagging load factor and load           |     |  |  |
| current is 200A. If it is desired to improve the power factor, determine the following            |     |  |  |
| (i) The uncorrected powerfactor                                                                   |     |  |  |
| (ii) The new corrected power factor after installing a shunt capacitor unit with a rating         |     |  |  |
| of 300kVAr.                                                                                       | [3] |  |  |
|                                                                                                   | [5] |  |  |
| 15. a) Explain AMR (Automatic Meter Reading) system.                                              |     |  |  |
| Ab) Explain the objectives of the Distribution Automation.                                        |     |  |  |

- 16. a) Classify the distribution system load modelling.
  - b) Describe the use of substation application curves for distribution system planning. [5]
- 17. Write short notes on any **two** of the following:

-

- a) Explain the rating of distribution feeders for non-uniform load. [5]
- b) Compare any two types of secondary banking systems used in distribution system. [5] [5]

\*\*\*\*\*

c) SCADA system for distribution system.